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Abstract
We investigate the convergence of stochastic mir-
ror descent in both relatively smooth and smooth
convex optimization. In relatively smooth con-
vex optimization we provide new convergence
guarantees for stochastic mirror descent (SMD)
with a constant stepsize. For smooth convex op-
timization we propose a new adaptive stepsize
scheme – the mirror stochastic Polyak stepsize
(mSPS). Notably, our convergence results in both
settings do not make bounded gradient assump-
tions or bounded variance assumptions, and we
show convergence to a neighborhood that van-
ishes under interpolation. We complement our
results with experiments across various super-
vised learning tasks and different instances of
SMD, demonstrating the effectiveness of mSPS.
Code is available at https://github.com/
IssamLaradji/mirror-sps.

1. Introduction
We address the problem of finite-sum optimization,

min
x∈X

[
f(x) =

1

n

n∑
i=1

fi(x)

]
, (1)

where X ⊆ Rd is a closed convex set. A common iterative
approach to solve (1) when X = Rd is stochastic gradient
descent (SGD), iterates are updated in the negative direction
of a gradient computed from a single i ∈ {1, · · · , n}. When
the problem is constrained, X ⊂ Rd, one may employ pro-
jected methods such as stochastic projected gradient descent
(SPGD). However, the convergence guarantees of both SGD
and SPGD depend on values measured by the Euclidean
norm. If the Euclidean structure is not naturally suited to
the problem, e.g. the function is smooth with respect to a
norm that is not the Euclidean norm, then SGD and SPGD
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can suffer a worse dependence on the dimension d of the
space Bubeck 2014. A powerful generalization of SGD and
SPGD is stochastic mirror descent (SMD) (Nemirovsky and
Yudin 1983; Beck and Teboulle 2003), permitting better
convergence guarantees by matching the geometry of the
problem.

A typical analysis of mirror descent—and first-order meth-
ods in general—usually involves the notion of smoothness
with respect to some norm ||·||, which is often used in se-
lecting the appropriate instance of mirror descent. However,
a recent trend is to study non-euclidean methods like mir-
ror descent with the more general assumption of relative
smoothness (Birnbaum, Devanur, and Xiao 2011; Bauschke,
Bolte, and Teboulle 2017; Lu, Freund, and Nesterov 2018).
In contrast to deterministic methods, stochastic methods
under relative smoothness have received less attention.

Our contributions are summarized as follows; novel anal-
ysis of SMD, our analysis includes new convergence guar-
antees in both the relatively smooth and smooth setting. In
both cases our analysis does not make bounded gradient
or bounded variance assumptions, instead we leverage the
finite optimal objective difference (Loizou et al. 2021),

σ2 := f(x∗)− E [f∗i ] <∞, (2)

where x∗ = minx∈X f(x) and f∗i := infx∈Rd fi(x). Novel
adaptive SMD for smooth optimization, we propose a nat-
ural extension of the recent adaptive stochastic Polyak step-
size (SPS) to mirror descent and provide convergence guar-
antees. Over-parametrized models and interpolation, as
a corollary of our theoretical results we obtain fast conver-
gence of both constant and adaptive stepsize SMD under
the interpolation setting.

2. Background
We denote vectors within the feasible set as x ∈ X ⊆ Rd,
where R is the set of real numbers. We denote a minimum
of (1) as x∗ ∈ X and assume it exists. We also use the
subscript to denote time, after t time steps we denote the
average of the iterates as x̄t = 1/t

∑t
s=1 xs. With a slight

abuse of notation we may also refer to the ith coordinate of
x as xi, x = (x1, · · · , xd). Whether the subscript refers to
time or the coordinate is clear from context. We denote ||·||2
as the Euclidean norm and ||·|| as any arbitrary norm with
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corresponding dual norm ||x||∗ = supy{〈x, y〉 : ||y|| ≤ 1}.

For a differentiable function ψ, we define the difference
between ψ(x) and the first order approximation of it at y as
the Bregman divergence Bψ(x; y), formally defined below.
Definition 1 (Bregman Divergence). Let ψ : D → R be
a continuously differentiable on intD. Then the Bregman
divergence with respect to ψ is Bψ : D × intD → R,
defined as Bψ(x; y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉.

A continously differentiable function f is convex on a set
X if Bf (x; y) ≥ 0 for any x, y ∈ X . Similarly, a function
f is L smooth with respect to a norm ||·|| if Bf (x; y) ≤
L
2 ||x− y||

2, and is µ strongly convex if µ
2 ||x− y||

2 ≤
Bf (x; y).

We will also refer to the generalization of smoothness and
strong convexity – relative smoothness and relative strong
convexity (Bauschke, Bolte, and Teboulle 2017; Lu, Fre-
und, and Nesterov 2018). For any x, y ∈ X , a differen-
tiable function f : X → R is L smooth relative to ψ if
Bf (x; y) ≤ LBψ(x; y), and is µ strongly convex relative to
ψ if µBψ(x; y) ≤ Bf (x; y).

2.1. Mirror descent

To solve problem (1) we consider the general stochastic
mirror descent update

xt+1 = arg min
x∈X
〈∇fi(xt), x〉+

1

ηt
Bψ(x;xt). (3)

In the non-smooth or deterministic setting∇fi(xt) may be
replaced by a subgradient or the full gradient respectively.
To make the updates well defined, all we require is that
xt+1 ∈ intD in update (3).
Assumption 1. Let X ⊆ D, then for any g, xt+1 =
arg minx∈X 〈g, x〉+ 1

ηt
Bψ(x;xt) ∈ intD.

For example the following assumption by Orabona (2019)
would be sufficient to guarantee Assumption 1.
Assumption 2. Let ψ : D → R be a strictly convex function
such that X ⊆ D, we require either one of the following to
hold: limx→∂X ||∇ψ(x)||2 = +∞ or X ⊆ int D.

We note that other assumptions can be made to guarantee
xt+1 ∈ intD.

The following standard one step mirror descent lemma will
be used often, and we include the proof in the appendix. All
other omitted proofs are deferred to the appendix.
Lemma 1. Let Bψ be the Bregman divergence with respect
to a convex function ψ : D → R and assume assumption 1
holds. Let xt+1 = arg minx∈X 〈gt, x〉+ 1

ηt
Bψ(x;xt). Then

for any x∗ ∈ X
Bψ(x∗;xt+1) ≤ Bψ(x∗;xt) − ηt〈gt, xt − x∗〉 −
Bψ(xt+1;xt) + ηt〈gt, xt − xt+1〉.

Furthermore if ψ is µψ strongly convex over X then

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)−ηt〈gt, xt−x∗〉+ η2t
2µψ
||gt||2∗ .

3. Constant and Polyak stepsize for mirror
descent

In this section we provide background on constant stepsize
selection for mirror descent and introduce our extensions of
the classic Polyak stepsize and the recent stochastic Polyak
stepsize (SPS) to mirror descent.

When a function is L smooth with respect to the Euclidean
norm, a commonly prescribed stepsize for gradient de-
scent is η = 1/L, allowing for convergence in many set-
tings (Bubeck 2014). Similarly if a function is L relatively
smooth with respect to a function ψ, then the prescribed
stepsize for mirror descent using ψ is η = 1/L (Birnbaum,
Devanur, and Xiao 2011; Lu, Freund, and Nesterov 2018).

An alternative method to selecting a stepsize, as suggested
by Polyak (1987), is to take ηt by minizing an upper
bound on ||xt+1 − x∗||22. From Lemma 1, if we take
ψ = 1

2 ||·||
2
2 and assume gt ∈ ∂f(xt) is a subgradient for

some convex function then we recover a well known inequal-
ity for projected subgradient descent: 1

2 ||x∗ − xt+1||22 ≤
1
2 ||x∗ − xt||

2
2 − ηt(f(xt)− f(x∗)) +

η2t
2 ||gt||

2
2 .

Selecting ηt that minimizes this bound yields Polyak’s step-
size, ηt = (f(xt)−f(x∗))/||gt||22 (Polyak 1987; Beck 2017).
Following in a similar fashion, we propose a generalization
of Polyak’s stepsize for mirror descent. If ψ is µψ strongly
convex1 with respect to the norm ||·|| then we can minimize
the right hand side of equation (1) to arrive at the mirror
Polyak stepsize ηt = µψ(f(xt)−f(x∗))/||gt||2∗.

Despite the well-known connection between projected sub-
gradient descent and mirror descent, this generalization of
Polyak’s stepsize is absent from the literature. For com-
pleteness, we include analysis of the non-smooth case in
the appendix. As expected, mirror descent with the mirror
Polyak stepsize maintains the benefits of mirror descent,
however, it is impractical – knowledge of f(x∗) and the use
of an exact gradient or subgradient is required.

In the stochastic setting Loizou et al. (2021) propose the
more practical stochastic polyak stepsize (SPS), ηt =
(fi(xt)−f∗

i )/c||∇fi(xt)||22, and the bounded variant SPSmax,
ηt = min{(fi(xt)−f∗

i )/c||∇fi(xt)||22, ηb}. Where f∗i is com-
monly known in many machine learning applications, and
c is a scaling parameter that depends on the class of func-
tions being optimized. Similar to the non-smooth case we
can propose a generalization of SPS and SPSmax, the mirror

1Note that without loss of generality we could assume ψ to be
1-strongly convex and scale ψ by 1/µψ, however, this would not
change the stepsize. Any scaling of ψ inversely scales the stepsize.
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stochastic Polyak stepsize (mSPS) and the bounded variant
mSPSmax,

mSPS : ηt =
µψ(fi(xt)− f∗i )

c ||∇fi(xt)||2∗
, (4)

mSPSmax : ηt = min

{
µψ(fi(xt)− f∗i )

c ||∇fi(xt)||2∗
, ηb

}
. (5)

3.1. Self-bounding property of mSPS

An important property of SPS and mSPS is its self-bounding
property for when fi is Li smooth and µi strongly convex
with respect to a norm ||·||,

µψ
2cLi

≤ ηt =
µψ(fi(xt)− f∗i )

c ||∇fi(xt)||2∗
≤ µψ

2cµi
. (6)

We will often make use of the lower bound, also known
as the self-bounding property of smooth functions (Srebro,
Sridharan, and Tewari 2010), and we provide a complete
proof in the appendix. A proof of the upper bound can be
found for example in Orabona (2019)[Corollary 7.6].

3.2. Related work on adaptive stepsizes

Adaptive stepsizes for first order methods have a long his-
tory. In the context of mirror descent the method of accu-
mulating past gradients or subgradients to set a stepsize,
ηt ∝ 1/

√∑t
s=1||gs||

2
∗ , can be traced back to online learn-

ing (Auer, Cesa-Bianchi, and Gentile 2002; Streeter and
McMahan 2010). More recently, a similar strategy has been
used to develop adaptive coordinate-wise stepsizes such
as ADAGRAD (i.e., variable metric methods) (McMahan
and Streeter 2010; J. Duchi, Hazan, and Singer 2011). Un-
fortunately, all the existing mirror descent methods with
the aforementioned stepsize scheme require a bounded con-
straint when guarantees are provided using regret bounds;
when the problem is unconstrained Orabona and Pál (2018)
prove a Ω(t) worst case lower bound for the regret. How-
ever, it may still be possible to show meaningful results
without relying on regret bounds. For example, see Li and
Orabona (2019) for convergence results in the case of uncon-
strained SGD. Furthermore, in the stochastic case bounded
gradient assumptions are made. In contrast our methods
employ a completely different stepsize selection strategy
and we make a very weak assumption on the noise.

4. Constant stepsize in relatively smooth
optimization

In this section we provide new convergence results for SMD
with constant stepsize under relatively smooth optimization.

For an appropriately selected stepsize, we have that SMD
enjoys a linear rate of convergence to a neighborhood of the
minimum x∗.

Theorem 1. Assume ψ satisfies assumption 1 . Furthermore
assume f to be µ strongly convex relative to ψ, and fi to
be L-smooth relative to ψ. Then SMD with stepsize η ≤ 1

L

guarantees E [Bψ(x∗;xt+1)] ≤ (1−µη)tBψ(x∗;x1)+ σ2

µ .

Under interpolation we have σ2 = 0, and SMD will con-
verge to the true solution. If ψ is strongly convex then
Theorem 1 provides a linear rate on the expected distance
||xt+1 − x∗||2 for some norm ||·||.

Similar to Theorem 1 we can show convergence of a quantity
to a neighborhood when only assuming fi to be L smooth
relative to ψ, where f or fi need not be convex.

Theorem 2. Assume ψ satisfies assumption 1. Further-
more assume fi to L-smooth relative to ψ. Then SMD
with stepsize η ≤ 1

L guarantees E
[
1
t

∑t
s=1Bf (x∗;xs)

]
≤

Bψ(x∗;x1)
ηt + σ2.

The above guarantee also shows a result for the “best” it-
erate, E [min1≤s≤tBf (x∗;xs)], to a neighborhood. If f is
strictly convex then this implies at least one iterate xs is
converging to a neighborhood of x∗ on expectation.

In the constant stepsize and relatively smooth regime,
Hanzely and Richtárik (2018) and Dragomir, Even, and
Hendrikx (2021) provide convergence guarantees for SMD
under different assumptions and to different neighborhoods.
Hanzely and Richtárik (2018) make an assumption akin to
bounded variance. Dragomir, Even, and Hendrikx (2021)
consider a more restrictive version of mirror descent with
a smaller stepsize, and assume ∇f(x∗) = 0, but show con-
vergence to a smaller neighborhood.

5. Convergence of mirror SPS
In this section we present our convergence results for SMD
with mSPSmax when fi are Li smooth with respect to some
norm and with varying assumptions. First, we consider the
case when f is strongly convex relative to ψ, a common
assumption when analysing mirror descent under strong
convexity (Hazan and Kale 2014). Then we present rates un-
der convexity and smoothness but without relatively strong
convexity.

5.1. Smooth and strong convexity

With strong convexity of ψ and f being relatively strongly
convex with respect to ψ we can show a linear rate of con-
vergence to a neighborhood.

Theorem 3. Assume fi are convex and Li smooth with
respect to the norm ||·||. Furthermore, assume that f is
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Figure 1. Comparison between mSPS with c = 1 and constant step-sizes on convex binary-classification problem with no constraints
(row1), and with `1 constraints (row2).

µ strongly convex relative to ψ, where ψ is µψ strongly
convex with respect to the norm ||·|| and assumption 1
holds. Then SMD with mSPSmax and c ≥ 1

2 guarantees

E [Bψ(x∗;xt+1)] ≤ (1 − µα)tBψ(x∗;x1) + ηbσ
2

αµ . Where
α := min{µψ/2cLmax, ηb} and Lmax = maxi{Li}ni=1.

Theorem 3 generalizes the existing SPSmax results for
SGD (Loizou et al. 2021)[Theorem 3.1] in fact we show
that it also holds for SPGD.

5.2. Smooth and convex

Without f being relatively strongly convex we can attain
convergence results on the average function value.

Theorem 4. Assume fi are convex and Li smooth with
respect to a norm ||·||, assumption 1 holds, and ψ is
µψ strongly convex with respect to the norm ||·||. Then
mirror descent with mSPSmax and c ≥ 1 guarantees
E [f(x̄t)− f(x∗)] ≤ 2Bψ(x∗;x1)

αt + 2ηbσ
2

α . Where α :=
min{µψ/2cLmax, ηb} and Lmax = maxi{Li}ni=1.

6. Experiments
We test the performance of mSPS on different supervised
learning domains with convex losses and with different
instances of mirror descent and use mSPS with c = 1. Al-
though in theory the bounded stepsize mSPSmax is required
in absence of interpolation, in practice we observe mSPS
converges.

We consider 2 series of experiments.2 First, in Section 6.1
we consider unconstrained convex problems with mSPS
and different p-norm algorithms, ψ(x) = ||x||2p. Second, in

2We provide additional details and more experiments in the
appendix.

Section 6.2 we solve a convex problem with a `1 constraint
using mSPS and the exponentiated gradient algorithm (EG).

6.1. Mirror descent across p-norms

We consider a convex binary-classification problems using
radial basis function (RBF) kernels without regularization.
We experiment on the ijcnn dataset obtained from LIB-
SVM (Chang and Lin 2011) which does not satisfy inter-
polation. However we show in the Appendix results on the
mushroom dataset which satisfies interpolation. For these
experiments we set ψ(x) = ||x||2p and compare across p
∈ {1.2, 1.4, 1.6, 1.8} between mSPS and the standard con-
stant stepsize method. The first row of Figure 1 shows the
training loss for the different optimizers with a softmax loss.
We make the following observations: (i) mSPS performs
reasonably well across different values of p and outperforms
most stepsizes of SMD. (ii) mSPS performs well on ijcnn
even in absence of inerpolation (σ2 > 0).

6.2. Exponentiated gradient with `1 constraint

To test the effectiveness of mSPS with EG we consider the
ijcnn and rcv1 datasets (Chang and Lin 2011) with logitistic
regression where parameters are constrained to the `1 ball,
X = {x : ||x||1 ≤ λ}. To solve this problem with EG,
we employ the trick of reducing an `1 ball constraint to a
simplex constraint (M. Zinkevich 2003; Schuurmans and
M. A. Zinkevich 2016).

For these experiments we test our optimizers on rcv1 and
ijcnn and two synthetic datasets and report their results
in row 2 of Figure 1. Like in the previous experiments,
mSPS is significantly faster than most constant stepsizes in
some cases outperforms the best tuned SMD. Note that the
constant stepsizes that don’t appear have diverged.
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reras Pérez, and Peter Bartlett (2008). “Exponentiated
gradient algorithms for conditional random fields and
max-margin markov networks”. In: Journal of Machine
Learning Research 9, pp. 1775–1822.

Dragomir, Radu-Alexandru, Mathieu Even, and Hadrien
Hendrikx (2021). “Fast Stochastic Bregman Gradient
Methods: Sharp Analysis and Variance Reduction”. In:
arXiv preprint arXiv:2104.09813.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adap-
tive subgradient methods for online learning and stochas-
tic optimization.” In: Journal of machine learning re-
search 12.7.

Duchi, John C (2018). “Introductory lectures on stochastic
optimization”. In: The mathematics of data 25, p. 99.

Hanzely, Filip and Peter Richtárik (2018). “Fastest rates for
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A. Mirror descent lemmas
Lemma 2 (Three Point Property (Bubeck 2014; Orabona 2019)). Let Bψ be the Bregman divergence with respect to
ψ : D → R. Then for any three points x, y ∈ intD , and z ∈ D, the following holds

Bψ(z;x) +Bψ(x; y)−Bψ(z; y) = 〈∇ψ(y)−∇ψ(x), z − x〉.

A.1. Proof of Lemma 1

Lemma 1. Let Bψ be the Bregman divergence with respect to a convex function ψ : D → R and assume assumption 1
holds. Let xt+1 = arg minx∈X 〈gt, x〉+ 1

ηt
Bψ(x;xt). Then for any x∗ ∈ X

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉 −Bψ(xt+1;xt) + ηt〈gt, xt − xt+1〉. (7)

Furthermore if ψ is µψ strongly convex over X then

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉+
η2t

2µψ
||gt||2∗ . (8)
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Proof. The proof follows closely to the one presented in Orabona (2019)[Lemma 6.7]. First observe that xt+1 statisfies the
first order optimality condition

〈ηtgt +∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉 ≥ 0,

since ∇xBψ(x;xt) = ∇ψ(x)−∇ψ(xt).

We start by examining the inner product 〈ηtgt, xt − x∗〉 and adding subtracting quantities to make the first order optimality
condition appear.

〈ηtgt, xt − x∗〉 = 〈ηtgt +∇ψ(xt+1)−∇ψ(xt), xt+1 − x∗〉+ 〈∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉+ 〈ηtgt, xt − xt+1〉
≤ 〈∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉+ 〈ηtgt, xt − xt+1〉(first order optimality)
= Bψ(x∗;xt)−Bψ(x∗;xt+1)−Bψ(xt+1;xt) + 〈ηtgt, xt − xt+1〉 (three point property).

Rearranging gives the first result. Note at this point we only require ψ to be convex and ψ to be differentiable at xt and
xt+1, which is guaranteed by assumption 1. To obtain the second result, observe

〈ηtgt, xt − x∗〉 ≤ Bψ(x∗;xt)−Bψ(x∗;xt+1)−Bψ(xt+1;xt) + 〈ηtgt, xt − xt+1〉 (from above)

≤ Bψ(x∗;xt)−Bψ(x∗;xt+1)− µψ
2
||xt+1 − xt||2 + 〈ηtgt, xt − xt+1〉 (strong convexity)

≤ Bψ(x∗;xt)−Bψ(x∗;xt+1) +
η2t

2µψ
||gt||2∗ (Fenchel-Young inequality).

Rearranging gives the second result.

B. Non-smooth analysis of mirror SPS for Lipschitz functions
As we have already mentioned in the main paper, the Polyak step-size is used extensively in the literature of projected
subgradient descent for solving non-smooth optimization problems. However to the best of our knowledge there is no
efficient generalization of this step-size for the more general mirror descent update.

Theorem 5 (Non-smooth deterministic). Assume f is convex with bounded subgradients, ||∂f(xt)||∗ ≤ G. Let ψ be µψ
strongly convex with respect to the norm ||·||, and assume that Assumption 1 holds. Then mirror descent with stepsize
ηt =

µψ(f(xt)−f(x∗))

||∂f(xt)||2∗
satisfies,

f (x̄t)− f(x∗) ≤ G

√
2
µψ
Bψ(x∗;x1)

t
,

where x̄t = 1
t

∑t
s=1 xs. The same result holds for the best iterate f(x∗t ) = mins{f(xs)}1≤s≤t.

Proof. Let gt be a subgradient of f at xt used to compute ηt. Then by Lemma 1 we have

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈gt, xt − x∗〉+
η2t

2µψ
||gt||2∗

≤ Bψ(x∗;xt)− ηt(f(xt)− f(x∗)) +
η2t

2µψ
||gt||2∗ (by convexity)

= Bψ(x∗;xt)−
µψ (f(xt)− f(x∗))

2

||gt||2∗
+
µψ (f(xt)− f(x∗))

2

2 ||gt||2∗
(by definition of ηt)

= Bψ(x∗;xt)−
µψ (f(xt)− f(x∗))

2

2 ||gt||2∗
.

Rearranging and summing across time we have

t∑
s=1

µψ (f(xs)− f(x∗))
2

2 ||gs||2∗
≤ Bψ(x∗;x1)−Bψ(x∗;xt+1) ≤ Bψ(x∗;x1).
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Applying the upper bound ||gs||∗ ≤ G and taking the square root gives,

t∑
s=1

(f(xs)− f(x∗))
2 ≤ G

√
2Bψ(x∗;x1)

µψ
.

The result then follows by the convexity of f and concavity of the square root function,

f(x̄t)− f(x∗) ≤
1

t

t∑
s=1

(f(xs)− f(x∗)) =
1

t

t∑
s=1

√
(f(xs)− f(x∗))2 ≤

√√√√1

t

t∑
s=1

(f(xs)− f(x∗))2

≤ G

√
2Bψ(x∗;x1)

tµψ
.

To obtain the best iterate result notice that f(x∗t )− f(x∗)) ≤ 1
t

∑t
s=1(f(xs)− f(x∗)).

C. Proof of mSPS lower bound in section 3
The lower bound of mSPS (6) when fi is L smooth, restated below, is vital to our analysis,

µψ
2cL

≤ ηt =
µψ(fi(xt)− f∗i )

c ||∇f(xt)||2∗
.

Notice the above inequality is equivalent to

1

2L
≤ (fi(xt)− f∗i )

||∇f(xt)||2∗
.

The first inequality is attained by multiplying both sides by µψ/c. We provide a detailed proof below.

Lemma 3. If f : Rn → R is L-smooth with respect to a norm ||·|| then

||∇f(x)||2∗
2L

≤ f(x)− inf
y∈Rn

f(y).

Rearranging and defining f∗ = infy∈Rn f(y) gives

1

2L
≤ f(x)− f∗

||∇f(x)||2∗
.

Proof. Since f is L-smooth we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
||x− y||2 ∀x, y ∈ Rn.
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Therefore we have the following upper bound on infy f(y).

inf
y
f(y) ≤ min

y

{
f(x) + 〈∇f(x), y − x〉+

L

2
||x− y||2

}
= min
r≥0,||z||≤1

{
f(x) + r〈∇f(x), z〉+

L

2
r2 ||z||2

}
≤ min
r≥0,||z||≤1

{
f(x) + r〈∇f(x), z〉+

L

2
r2
}

= f(x) + min
r≥0

{
min
||z||≤1

{r〈∇f(x), z〉}+
L

2
r2
}

= f(x) + min
r≥0

{
−r max
||z||≤1

{〈∇f(x),−z〉}+
L

2
r2
}

= f(x) + min
r≥0

{
−r ||∇f(x)||∗ +

L

2
r2
}

by the definition of ||·||∗

(r=||∇f(x)||∗/L)= f(x)−
||∇f(x)||2∗

L
+
||∇f(x)||2∗

2L

Simplifying and rearranging gives the result.

D. Proofs for section 4
In this section we provide proofs of our main results in the relative smooth setting. For convenience we denote the expectation
over index i ∈ {1, · · · , n} conditional on knowing xt as Et [·].

First we provide the following lemma which allows us to bound the last two terms in (Lemma 1). This result can be seen
as a generalization of Lemma 2 in Collins et al. (2008), where the exponentiated gradient algorithm is studied under the
relative smoothness assumption.
Lemma 4. Suppose f is L smooth relative to ψ. Then if η ≤ 1

L we have

−Bψ(xt+1;xt) + η〈∇f(xt), xt − xt+1〉 ≤ η(f(xt)− f(xt+1)).

Proof. Since f is L smooth relative to ψ it is also 1
η smooth relative to ψ (because L ≤ 1

η and ψ is convex). Therefore,

Bf (xt+1;xt) ≤
1

η
Bψ(xt+1;xt)

=⇒ −Bψ(xt+1;xt) + ηBf (xt+1;xt) ≤ 0.

Now we examine the inner product η〈∇f(xt), xt − xt+1〉,

η〈∇f(xt), xt − xt+1〉 = η (f(xt+1)− f(xt)− 〈∇f(xt), xt+1 − xt〉+ f(xt)− f(xt+1))

= η (Bf (xt+1;xt) + f(xt)− f(xt+1)) .

Therefore, we have the following

−Bψ(xt+1;xt) + η〈∇f(xt), xt − xt+1〉 = −Bψ(xt+1;xt) + ηBf (xt+1;xt) + η(f(xt)− f(xt+1)

≤ η(f(xt)− f(xt+1).

D.1. Proof of Theorem 1

Theorem 1. Assume ψ satisfies assumption 1 and is strictly convex. Furthermore assume f to be µ strongly convex relative
to ψ, and fi to be L-smooth relative to ψ. Then stochastic mirror decent with stepsize η ≤ 1

L guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µη)tBψ(x∗;x1) +
σ2

µ
.
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Proof. From Lemma 1 (before applying strong convexity but assuming convexity of ψ) we have

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− η〈∇fi(xt), xt − x∗〉 −Bψ(xt+1;xt) + η〈∇fi(xt), xt − xt+1〉
≤ Bψ(x∗;xt)− η〈∇fi(xt), xt − x∗〉+ η(fi(xt)− fi(xt+1)) (by Lemma 4)
≤ Bψ(x∗;xt)− η〈∇fi(xt), xt − x∗〉+ η(fi(xt)− f∗i ) (by definition of f∗i )
= Bψ(x∗;xt)− η〈∇fi(xt), xt − x∗〉+ η(fi(xt)− fi(x∗)) + η(fi(x∗)− f∗i ).

By taking an expectation conditioning on xt we obtain,

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)− η〈∇f(xt), xt − x∗〉+ η(f(xt)− f(x∗)) + η(f(x∗)− Et [f∗i ])

= Bψ(x∗;xt)− η (f(x∗)− f(xt)− 〈∇f(xt), x∗ − xt〉)︸ ︷︷ ︸
Bf (x∗;xt)

+η(f(x∗)− Et [f∗i ]) (9)

≤ Bψ(x∗;xt)(1− µη) + η(f(x∗)− Et [f∗i ]) (by relative strongly convexity of f ).

Now by the tower property of expectations and applying the definition of σ2,

E [Bψ(x∗;xt+1)] ≤ E [Bψ(x∗;xt)] (1− µη) + ησ2.

Iterating the inequality gives,

E [Bψ(x∗;xt+1)] ≤ Bψ(x∗;x1)(1− µη)t +

t−1∑
s=0

ησ2(1− µη)s

≤ Bψ(x∗;x1)(1− µη)t +
σ2

µ
.

Where the last inequality follows by
∑t−1
s=0(1− µη)s ≤

∑∞
s=0(1− µη)s = 1/µη.

D.2. Proof of Theorem 2

Theorem 2. Assume ψ satisfies assumption 1. Furthermore assume fi to L-smooth relative to ψ. Then stochastic mirror
decent with stepsize η ≤ 1

L guarantees

E

[
1

t

t∑
s=1

Bf (x∗;xs)

]
≤ Bψ(x∗;x1)

ηt
+ σ2.

Proof. Note that in the proof of Theorem 1 relative strong convexity is not used to attain the inequality (9). Therefore we
have,

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)− ηBf (x∗;xt) + η(f(x∗)− Et [f∗i ]).

After applying the tower property, definition of σ2, and rearranging, we have

ηE [Bf (x∗;xt)] ≤ E [Bψ(x∗;xt)]− E [Bψ(x∗;xt+1)] + ησ2.

Summing across time and dividing by ηt gives the result.

E. Proofs for section 5
In this section we provide proofs of our main results in the smooth setting. For convenience we denote the expectation over
index i ∈ {1, · · · , n} conditional on knowing xt as Et [·].

Notice that by definition of mSPSmax we have the following upper bound

ηt ≤
µψ(fi(xt)− f∗i )

c ||∇fi(xt)||2∗
.
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Muliplying both sides of the inequality with ηt||∇fi(xt)||2∗/µψ gives the following useful inequality,

η2t ||∇fi(xt)||
2
∗

µψ
≤ ηt(fi(xt)− f∗i )

c
. (10)

The inequality holds with equality for mSPS.

E.1. Proof of Theorem 3

Theorem 3. Assume fi are convex and Li smooth with respect to the norm ||·||. Furthermore, assume that f is µ strongly
convex relative to ψ, where ψ is µψ strongly convex with respect to the norm ||·|| and assumption 1 holds. Then stochastic
mirror descent with mSPSmax and c ≥ 1

2 guarantees

E [Bψ(x∗;xt+1)] ≤ (1− µα)tBψ(x∗;x1) +
ηbσ

2

αµ
.

Where α := min{µψ/2cLmax, ηb} and Lmax = maxi{Li}ni=1.

Proof.

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈∇fi(xt), xt − x∗〉+
η2t

2µψ
||∇fi(xt)||2∗

(10)

≤ Bψ(x∗;xt)− ηt〈∇fi(xt), xt − x∗〉+ ηt
(fi(xt)− f∗i )

2c
(c≥1/2)

≤ Bψ(x∗;xt)− ηt〈∇fi(xt), xt − x∗〉+ ηt(fi(xt)− f∗i )

= Bψ(x∗;xt)− ηt〈∇fi(xt), xt − x∗〉+ ηt(fi(xt)− fi(x∗) + fi(x∗)− f∗i )

= Bψ(x∗;xt)− ηt (fi(x∗)− fi(xt)− 〈∇fi(xt), x∗ − xt〉)︸ ︷︷ ︸
≥0

+ηt(fi(x∗)− f∗i )

(6)

≤ Bψ(x∗;xt)−min

{
µψ

2cLi
, ηb

}
(fi(x∗)− fi(xt)− 〈∇fi(xt), x∗ − xt〉) + ηb(fi(x∗)− f∗i )

Taking an expectation over i condition on xt gives

Et [Bψ(x∗;xt+1)] ≤ Bψ(x∗;xt)−min

{
µψ

2cLi
, ηb

}
(f(x∗)− f(xt)− 〈∇f(xt), x∗ − xt〉) + ηbEt [(fi(x∗)− f∗i )]

≤ Bψ(x∗;xt)

(
1− µmin

{
µψ

2cLmax
, ηb

})
+ ηbEt [(fi(x∗)− f∗i )] (by relative strong convexity of f )

= Bψ(x∗;xt) (1− µα) + ηbEt [(fi(x∗)− f∗i )] .

Now by the tower property of expectations and applying the definition of σ2,

E [Bψ(x∗;xt+1)] ≤ E [Bψ(x∗;xt)] (1− µα) + ηbσ
2.

Iterating the inequality gives,

E [Bψ(x∗;xt+1)] ≤ Bψ(x∗;x1)(1− µα)t +

t−1∑
s=0

ηbσ
2(1− µα)s

≤ Bψ(x∗;x1)(1− µα)t +
ηbσ

2

αµ
.

Where the last inequality follows by
∑t−1
s=0(1− µα)s ≤

∑∞
s=0(1− µα)s = 1/µα.
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E.2. Proof of Theorem 4

Theorem 4. Assume fi are convex and Li smooth with respect to a norm ||·||, assumption 1 holds, and ψ is µψ strongly
convex with respect to the norm ||·||. Then stochastic mirror descent with mSPSmax and c ≥ 1 guarantees

E [f(x̄t)− f(x∗)] ≤
2Bψ(x∗;x1)

αt
+

2ηbσ
2

α
.

Where α := min{µψ/2cLmax, ηb} and Lmax = maxi{Li}ni=1.

Proof. We begin with Lemma 1,

Bψ(x∗;xt+1) ≤ Bψ(x∗;xt)− ηt〈∇fi(xy), xt − x∗〉+
η2t

2µψ
||∇fi(xt)||2∗

≤ Bψ(x∗;xt)− ηt (fi(xt)− fi(x∗)) +
η2t

2µψ
||∇fi(xt)||2∗ by convexity

(10)

≤ Bψ(x∗;xt)− ηt (fi(xt)− fi(x∗)) +
ηt(fi(xt)− f∗i )

2c
(c≥1)
≤ Bψ(x∗;xt)− ηt (fi(xt)− fi(x∗)) +

ηt(fi(xt)− f∗i )

2

= Bψ(x∗;xt)− ηt (fi(xt)− f∗i + f∗i − fi(x∗)) +
ηt(fi(xt)− f∗i )

2

= Bψ(x∗;xt)− ηt
(

1− 1

2

)
(fi(xt)− f∗i ) + ηt(fi(x∗)− f∗i )

= Bψ(x∗;xt)−
ηt
2

(fi(xt)− f∗i )︸ ︷︷ ︸
≥0

+ηt(fi(x∗)− f∗i )

(6)

≤ Bψ(x∗;xt)−
α

2
(fi(xt)− f∗i ) + ηb(fi(x∗)− f∗i )

= Bψ(x∗;xt)−
α

2
(fi(xt)− fi(x∗))−

α

2
(fi(x∗)− f∗i ) + ηb(fi(x∗)− f∗i )

≤ Bψ(x∗;xt)−
α

2
(fi(xt)− fi(x∗)) + ηb(fi(x∗)− f∗i )

Recall from (6) that we have

α = min

{
µψ

2cLmax
, ηb

}
≤ ηt ≤ ηb.

By a simple rearrangement we have

α

2
(fi(xt)− f∗i ) ≤ Bψ(x∗;xt)−Bψ(x∗;xt+1) + ηb(fi(x∗)− f∗i ).

Taking an expectation on both sides, dividing by α, and applying the definition of σ2 yields

E [f(xt)− f(x∗)] ≤
2

α
(E [Bψ(x∗;xt)]− E [Bψ(x∗;xt+1)]) +

2ηb
α
σ2.

Summing across time, applying convexity of f , and dividing by t gives

E [f(x̄t)− f(x∗)] ≤
1

t

t∑
s=1

E [f(xs)− f(x∗)] ≤
2Bψ(x∗;x1)

αt
+

2ηbσ
2

α
.
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E.2.1. CONSTANT STEPSIZE COROLLARY

In this section we present the constant stepsize corollary for Theorem 4. If ηb ≤ µψ/2Lmax then mSPSmax with c = 1 is a
constant stepsize because of the lower bound (6), ηt = ηb, and we have that ηb = α. Therefore plugging in these values into
Theorem 4 gives the following corollary.
Corollary 8. Assume fi are convex and Li smooth with respect to a norm ||·||, assumption 1 holds, and ψ is µψ strongly
convex with respect to the norm ||·||. Then stochastic mirror descent with η ≤ µψ/2Lmax guarantees

E [f(x̄t)− f(x∗)] ≤
2Bψ(x∗;x1)

ηt
+ 2σ2.

Where Lmax = maxi{Li}ni=1.

F. Experiment details
In this section we provide details for our experiments including the updates for different mirror descent algo-
rithms. Note that in all our experiments we have f∗i = 0, and for the constant stepsize we sweep over
{10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105}.

F.1. Compute resources

We ran around a thousand experiments using an internal cluster, where each experiment uses a single NVIDIA Tesla P100
GPU, 40GB of RAM, and 4 CPUs. Some experiments like the synthetic ones took only few minutes to complete, while the
deep learning experiments like CIFAR10 took about 12 hours.

F.2. Mirror descent across p-norms

We select ψ(x) = 1
2 ||x||

2
p and X = Rd for 1 < p ≤ 2. We have in this case that ψ is µψ = (p− 1) strongly convex with

respect to the norm ||·||p with dual norm ||·||q where q is such that 1/p + 1/q = 1 (Orabona 2019). Therefore, mSPSmax with
c = 1 is

ηt = min

{
(p− 1)(fi(xt)− f∗i )

||∇fi(xt)||2q
, ηb

}
,

and similarly for mSPS.

The closed form update for mirror descent in this case is given by the following coordinate wise updates (J. C. Duchi 2018):
let φp : Rd → Rd with component functions φpi (x) = (||x||p)2−p sign(xi)|xi|p−1, then the mirror descent update with
stepsize ηt is

xt+1 = φq(φp(xt)− ηt∇fi(xt)).

F.3. Exponentiated gradient with `1 constraint

We consider the case of supervised learning with constraint set X = {x : ||x||1 ≤ λ}. To consider the exponentiated
gradient algorithm we equivalently write the set X as a convex hull of its corners, X = {Λx : x ∈ ∆2d} where ∆2d is the
2d-dimensional probability simplex and Λ is a matrix with 2d columns and d rows,

Λ =


λ −λ 0 0 · · · 0 0
0 0 λ −λ · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · λ −λ

 .

Therefore we can use the exponentiated algorithm with constraint set ∆2d by selecting ψ(x) =
∑2d
i=1 xi log(xi). In this

case ψ is µψ = 1 strongly convex on ∆2d with respect to the norm ||·||1. Since the dual norm ||·||∗ = ||·||∞ we have that
mSPSmax with c = 1 is

ηt = min

{
(fi(xt)− f∗i )

||∇fi(xt)||2∞
, ηb

}
,
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and similarly for mSPS.

The mirror descent update then can be written in two steps (Bubeck 2014),

yt+1 = xt � exp(−ηt∇fi(xt))

xt+1 =
yt+1

||yt+1||1
.

Where � and exp are component wise multiplication and component wise exponentiation respectively.

F.4. Additional Results across p-norms

We observe in Figure 2 that mSPS outperforms a large grid of step-sizes for most values of p. Note that we used the
mushrooms dataset with the kernel bandwidth selected in Vaswani et al. (2019) which satisfies interpolation.
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Figure 2. Comparison between mSPS with c = 1 and constant step-sizes on convex binary-classification problem on the mushroom
dataset.

Figure 3. Comparison between mSPS with c = 0.2 and constant step-sizes on non-convex multiclass classification with deep networks.
The leftmost plot shows the step-size evolution for different p values.

For mutliclass-classification with deep networks, we considered the p-norm algorithms for the CIFAR10 dataset and we set
c = 0.2, as recommended by Loizou et al. (2021). CIFAR10 has 10 classes and we used the standard training set consisting
of 50k examples and a test set of 10k. As in the kernel experiments, we evaluated the optimizers using the softmax loss for
different values of p. We used the experimental setup proposed in Loizou et al. (2021) and used a batch-size of 128 for all
methods and datasets. We used the standard image-classification architecture ResNet-34 (He et al. 2016). As in the other
experiments, each optimizer was run with five different random seeds in the final experiment. The optimizers were run until
the performance of most methods saturated; 200 epochs for the models on the CIFAR10 dataset.

From Figure 3, we observe that: (i) mSPS with c = 0.2 constantly converges to a good solution much faster when compared
to most constant stepsizes. (ii) The gap between the performance of mSPS and constant stepsize increases as p decreases
suggesting that, like in the convex setting, our method is robust to different values of p. Note that we used smoothing for
computing the SPS step-size which was recommended in Loizou et al. (2021) for the deep learning experiments.


