

Optimistic and Adaptive Lagrangian Hedging

Ryan D'Orazio¹ Ruitong Huang²

¹Université de Montréal, MILA ²Borealis AI

Contact: ryan.dorazio@mila.quebec

Lagrangian Hedging

Generalizes the following in one framework:

- Regret-matching and regret-matching+
- Polynomial weighted averaging and polynomial weighted
- averaging+
- Hedge aka multiplicative weights

Lagrangian Hedging Setup

- Find *u* such that $\langle u, x \rangle = 1$ $\forall x \in \mathcal{X}$
- Otherwise set $\mathcal{X} = \{(x, 1) | x \in \mathcal{X}\}$ and pick $u = (0, \dots, 0, 1)$
- Set \mathcal{S} to be the polar cone to \mathcal{X} ,
- $\mathcal{S} = \{s | \langle s, x \rangle \leq 0 \quad \forall x \in \mathcal{X} \}$
- At round t maintain regret vector

$$s_{1:t-1} = \sum_{k=1}^{t-1} \langle \ell_k, x_k \rangle u - \ell_k = \sum_{k=1}^{t-1} s_k$$

Objective

Optimistic and Adaptive Lagrangian Hedging

Pick a convex smooth potential function *F* 2. At time *t* play the strategy

 $x_t = \begin{cases} \frac{\nabla F(\eta_t(s_{1:t-1}+m_t))}{\langle \nabla F(\eta_t(s_{1:t-1}+m_t)), u \rangle} & \text{if } \langle \nabla F(\eta_t(s_{1:t-1}+m_t)), u \rangle > 0 \\ \text{arbitrary } x \in \mathcal{X} & o.w. \end{cases}$

Results

. Step-size free algorithms (e.g. regret-matching and regret-matching+) that guarantee

$$\boldsymbol{R}_{\mathcal{X}}^{T} \in \boldsymbol{O}\left(\left|\sum_{t=1}^{T} \|\boldsymbol{s}_{t} - \boldsymbol{m}_{t}\|^{2}\right)\right)$$

2. When a stepsize is needed (e.g. hedge)

$$\eta_{t} = \frac{1}{\sqrt{\frac{1}{\eta_{1}^{2}} + \sum_{k=1}^{t-1} \|s_{k} - m_{k}\|^{2}}} = \frac{1}{\left|\left|s_{k}^{T} - m_{k}^{T}\right|^{2}}$$

$$R_{\mathcal{X}}^{T} \in O\left(\left(\sqrt{\frac{1}{\frac{1}{\eta_{1}^{2}} + \sum_{t=1}^{T-1} \|s_{t} - m_{t}^{T}\|^{2}}}\right)$$

1

3. Regret with a fixed Smooth Convex Loss

$$\boldsymbol{R}_{\mathcal{X}}^{T} \in \boldsymbol{O}\left(\left|\sum_{t=1}^{T} \|\boldsymbol{x}_{t} - \boldsymbol{x}_{t-1}\|^{2}\right)\right)$$

4. Adaptive and Optimistic Regret Bounds for Φ -Regret

Includes new optimistic and adaptive algorithms to minimize internal regret and more!

Related Work

Gabriele Farina, Christian Kroer, Tuomas Sandholm G. Farina, C. Kroer, T. Sandholm, "Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent." AAAI-21

Matching regret-bounds (up to a constant) with:

See our full paper on Arxiv!

