
Optimistic and Adaptive Lagrangian Hedging
Ryan D’Orazio1 Ruitong Huang2
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Problem

Performance after T Rounds

RT
X =

T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x)

Assumptions
1. `t are linear `t(·) = 〈`t, ·〉a
2. X convex and compact

Objective
Vanishing average regret

RT
X

T
→ 0 as T →∞

Lower Bound
RT
X ∈ Ω

(√
T
)

aLinear losses are enough for convex losses.

Motivation

Some problems are predictable!

I If mt ≈ `t then regret should be small
I How do we:

1. incorporate the prediction mt to leverage predictable problems?
2. maintain worst-case performance in online setting but perform well

on predictable problems?

Optimistic︸ ︷︷ ︸
Use a prediction mt

+ adaptive algorithms︸ ︷︷ ︸
Use adaptive stepsizes ηt

Examples of predictable problems:

I L smooth convex optimization
‖∇`(x)−∇`(y)‖ ≤ L ‖x− y‖∗

I Convex concave games with L smooth gradients

Lagrangian Hedging

Generalizes the following in one framework:
I Regret-matching and regret-matching+
I Polynomial weighted averaging and polynomial weighted

averaging+
I Hedge aka multiplicative weights

Lagrangian Hedging Setup
I Find u such that 〈u, x〉 = 1 ∀x ∈ X

I Otherwise set X = {(x, 1) |x ∈ X} and pick u = (0, · · · , 0, 1)

I Set S to be the polar cone to X ,
S = {s|〈s, x〉 ≤ 0 ∀x ∈ X}

I At round t maintain regret vector

s1:t−1 =

t−1∑
k=1

〈`k, xk〉u− `k =

t−1∑
k=1

sk

RT
X ≤ inf

s∈S
‖s1:T − s‖max

x∈X
‖x‖∗

Objective
inf s∈S ‖s1:T − s‖

T
→ 0 as T →∞

Optimistic and Adaptive Lagrangian Hedging

1. Pick a convex smooth potential function F
2. At time t play the strategy

xt =

{
∇F(ηt(s1:t−1+mt))
〈∇F(ηt(s1:t−1+mt)),u〉 if 〈∇F(ηt(s1:t−1 + mt)), u〉 > 0
arbitrary x ∈ X o.w.

Results
1. Step-size free algorithms (e.g. regret-matching and

regret-matching+) that guarantee

RT
X ∈ O


√√√√ T∑

t=1

‖st − mt‖2


2. When a stepsize is needed (e.g. hedge)

ηt =
1√

1
η2

1
+
∑t−1

k=1 ‖sk − mk‖2
=⇒

RT
X ∈ O


√√√√ 1
η2

1
+

T−1∑
t=1

‖st − mt‖2


3. Regret with a fixed Smooth Convex Loss

RT
X ∈ O


√√√√ T∑

t=1

‖xt − xt−1‖2


4. Adaptive and Optimistic Regret Bounds for Φ-Regret

I Includes new optimistic and adaptive algorithms to minimize internal
regret and more!
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